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Abstract  

Although a considerable number of problems whose analysis depends on a set of complex mathematical 

relations exist in the literature due to recent developments in the field of decision making, still very 

simplified and unrealistic assumptions are involved in many. Simulation is one of the most powerful tools 

to deal with this kind of problems and enjoys being free of any restricting assumptions which may 

generally be considered in a stochastic system. In addition, simulation optimization techniques are 

categorized into two broad classes of model-based and meta-model-based methods. In the first class, 

simulation and optimization component interact with each other causing an increase in simulation times 

and costs. To cope with this problem, a third component defined as a meta-model that estimates the 

relationships between the inputs and outputs of the system being simulated comes to the picture in the 

second class problems.  Besides, optimization of semi-expensive simulation optimization problems needs 

a numerous simulation run in model-based methods. However, as the validation cost increases at a rapid 

rate in each iteration of the meta-model-based methods, a new method which consists of two phases has 

been introduced in the literature to solve semi-expensive simulation optimization problems in less 

computational time. In the first phase, similar to a model-based algorithm, the simulation output is used 

directly in the optimization stage. In the second phase, the simulation model is changed with a validated 

meta-model. In this paper, an artificial neural network is employed as the meta-model in order to compare 

its performance to the ones of the original algorithm that uses a Kriging meta-model in five popular test 

problems as well as an (s, S) inventory problem. 
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1. Introduction 

 From its very beginnings over five decades ago, simulation has been a powerful tool to 

assess potential risks and to guide managers and practitioners in making decisions under 

uncertainty. The simulation approach can provide more accurate anticipating risks and makes 

more robust decisions in the face of uncertainty, ambiguity, and variability. Moreover, the 

process of finding the best values of input variables among all possibilities without explicitly 

evaluating each possibility is the so-called simulation optimization. There is a wide variety of the 

applicability of the simulation-optimization approach in different problems. For instance, a few 

applications of the simulation-optimization approach include liver transplant management, 

maritime logistics optimization, semiconductor production planning, and parasitology calibration 

mentioned in Xu et al. (2015).  

 There are basically two main methods to optimize a simulation model; (1) model-based 

and (2) meta-model-based. In the first method, simulation and optimization phases are performed 

in an iterative approach until a stopping criterion is met. In the latter, however, a surrogate model 

is used to mimic the simulation behavior when a high computational burden such as the one in 

the Ford Motor Company crash simulation, which takes about 36-60 hours for one replication, is 

involved (Wang & Shan, 2007). Having one crash in each iteration of this simulation and 

assuming that an average number of 50 iterations are needed for the optimization of a two-

variable problem, the total computational time would range between 75 days to 11 months, 

which is unacceptable in practice. Nevertheless, predicting an approximate meta-model 

(surrogate model) that replaces the simulation model would result in a negligible cost compared 

to the above simulation cost (Wang et al., 2019). The widely used surrogate models in the 

literature include Kriging, Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

and Radial Basis Function (RBF). 

 Establishing a surrogate model often goes through three steps as follows (Nguyen et al., 

2014): 

 Sampling input vectors and calculating corresponding model responses, which constitute a 

database for training a surrogate model. 

 Constructing the surrogate model based on the database by selecting an appropriate 

method, e.g., Kriging, SVM, ANN, RBF. 

 Validating the model before being used as a ‘‘surrogate’’ of the original model. 
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 Both model and meta-model based methods have some benefits and drawbacks 

summarized in Table 1. Although meta-model based algorithms have some disadvantages, when 

a single replication of the simulation model takes more than about five minutes, one has to use a 

meta-model based algorithm. This is due to the fact that a large number (usually 2000 to 4000 on 

the average) of replications is required in model-based simulations to assess simulation points in 

order to use them is the optimization process. In a meta-model-based simulation, however, the 

number of simulation replications is minimized. Meanwhile, when a single replication of the 

simulation model takes less than five minutes, meta-model approaches are not efficient as they 

require too much time for their validation processes and due to their fitting errors. In these cases, 

the use of the model-based approach is recommended.  

 

Table 1: Pros and Cons of simulation optimization approaches 

Method Advantages Disadvantages 

Model-

Based 

 Accurate and numerically efficient 

for inexpensive simulation 

problems 

 Needs to assess a large number of 

simulation points 

 Gives no insight about the 

objective function 

Meta-Model 

Based 

 Relieve the computational expense 

by replacing the simulation with an 

approximation model 

 Existence of fitness error 

 Validation time 

 Gets trapped in the fitting and 

validating steps 

 

 Sometimes a single replication of a simulation model takes more than two, but less than 5 

minutes on the average. As such, neither the model-based nor the meta-model-based simulation 

methods are appropriate due to their disadvantages. For this kind of simulations, Moghaddam & 

Mahlooji (2017) presented an algorithm named Semi-Metamodel-Based (SMB) that employs a 

meta-model while it is different from the common meta-model-based algorithms. They showed 

that their algorithm does not have the disadvantages of the model-based approach and tends to 

alleviate some of the problems of the meta-model-based algorithms. In the first phase, the 

algorithm acts as a model-based method and directly uses the simulation output in the 

optimization phase. In this phase, the optimization component goes forward and the construction 

of the meta-model gets underway in parallel. As in every step, several simulation points are 
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added to the experimental design, the time required for the meta-model validation decreases. The 

second phase of the algorithm employs the meta-model obtained from the first phase to evaluate 

the solutions in the optimization stage and begins once the meta-model is validated. Furthermore, 

they presented an optimization algorithm based on particle swarm optimization (PSO) which 

employs some strategies to improve its intensification and diversification characteristics. 

 The primary approach used to construct a surrogate model based on available simulation 

points is the Gaussian process regression or the so-called Kriging method. This estimation 

method aims to find a minimum error-variance estimate of any un-sampled simulation point by 

smoothing out the extreme values of the available simulation points. As such, the objective of the 

current paper is to compare the performances of the Kriging and an ANN approach used as 

surrogate models in the SMB algorithm (Moghaddam & Mahlooji, 2017). To this aim, 

simulation points obtained by an (s, S) inventory control model as well as the ones from five 

popular test functions are taken into the investigation. 

 The structure of the rest of the paper is as follows. The literature review is given in details 

in Section 2. The employed ANN meta-model is described in Section 3. Section 4 contains the 

characteristics of the SMB algorithm. The (s, S) inventory and the test functions are brought in 

Section 5 to assess the performance of ANN meta-model in the SMB algorithm and to 

demonstrate the comparison of its results with the ones obtained by the Kriging-based meta-

model. Finally, the paper is concluded in Section 6 where some recommendations are given for 

future research. 

 

2. Literature review 

 In this section, some of the available model-based and meta-model-based algorithms used 

to solve simulation optimization problems are first surveyed. Then, the basic differences between 

the Kriging and the ANN meta-model in terms of the simulation-optimization techniques will be 

discussed. As mentioned above, several model-based approaches have been proposed in the 

literature on simulation optimization problems. Wang (2005) worked an excellent optimization 

approach using a hybrid method of genetic algorithm (GA) and neural network. They employed 

a neural network to predict the objective function value and then utilized a GA to use its 

effective and robust evolutionary searching ability in determining the best values of the input 

parameters. Shi & Ólafsson (2000) proposed the nested partition as a global sampling method 
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that continuously is adapted via partitioning of the feasible solution region, attempting to reduce 

the computational load by selecting the most promising regions. Besides, Ahmed & Alkhamis 

(2009) integrated simulation with optimization to design a decision support tool for a 

governmental hospital in Kuwait. They evaluated the impacts of various staffing levels on 

hospital service efficiency in order to determine the optimal number of doctors. Tsai & Fu (2014) 

employed two GA-based algorithms for a discrete simulation optimization problem with a single 

stochastic constraint that adopts different sampling rules and searching mechanisms, and thus 

deliver various statistical guarantees. 

 Meta-modeling has been applied to build simulations for a variety of reasons including 

early decision-making designs, uncertainty and sensitivity analyses, design optimizations, and 

model calibrations (Nguyen et al., 2014). The meta-model-based technique is one of the most 

popular research areas in the simulation optimization field, where various algorithms have been 

proposed.  For instance, Jones et al. (1998) used the Kriging approach in an algorithm called 

Efficient Global Optimization (EGO) to interpolate between function values and chose future 

samples based on an expected improvement metric for simulations with a deterministic output. In 

addition, ANNs have been employed in many algorithms proposed in the literature to optimize 

time-consuming simulations. To name a few, Dengiz et al. (2009) optimized two manufacturing 

systems utilizing neural network meta-models in which a tabu search (TS) meta-heuristic was 

used for the training of the ANNs in order to improve the performance of the meta-modeling 

approach. Mohammad Nezhad & Mahlooji (2014) presented an ANN meta-model for expensive 

continuous simulation optimization (SO) with stochastic constraints. Capturing the non-linear 

nature of the ANN, the SO problem was iteratively approximated via non-linear programming 

problems whose (near) optimal solutions obtain estimates of the global optima. A comprehensive 

review of other meta-models for optimization strategies as computationally-expensive black-box 

functions is available in Shan & Wang (2010). 

 Neural network and Kriging approximation are among the most attractive techniques in 

simulation-optimization meta-modeling. Willmes et al. (2003) compared the performance of 

feed-forward neural networks and Kriging as fitness approximation used in evolutionary 

optimization in off-line and online learning. Yuan & Guangchen (2009) applied four 

performance measures to evaluate different types of meta-model performances such as the ability 

to provide good starting points for gradient-based search, the accuracy of placing optima in the 
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correct location and so on. Furthermore, the performance of the Kriging model was compared 

with the one of an ANN meta-model in Vicario et al. (2016) in order to determine which model 

guarantees a higher accuracy in predicting the result of four-dimensional computational fluid 

dynamics system. Moreover, Beşikçi et al. (2016) compared the performance of an ANN meta-

model with one of a multiple regression (MR) model, when the superiority of the former was 

confirmed. Interested readers are referred to Østergård et al. (2018) for other comparison studies 

among linear regression with ordinary least squares (OLS), random forest (RF), support vector 

regression (SVR), multivariate adaptive regression splines, Gaussian process regression (GPR), 

and neural network meta-model. In their work, the authors considered five performance 

indicators to be used in eight test problems as well as 19 mathematical test functions. 

 

3. Neural network meta-model 

 Neural networks (NNs) are powerful tools for the approximation of unknown nonlinear 

functions and have gained wide applications in a variety of fields. ANNs can approximate 

arbitrary smooth functions and can be fitted using noisy response values. ANNs were developed 

to mimic neural processing and can be implemented on a digital computer using networks of 

numerical processors whose inputs and outputs are linked according to specific topologies 

(Barton & Meckesheimer, 2006). 

 NNs used for function approximation are typically multi-layer feed-forward networks. A 

feed-forward ANN refers to an ANN architecture in which signals flow towards the output layer 

in a forward manner. Feed-forward layered networks have the flexibility to approximate smooth 

functions arbitrarily well, provided sufficient nodes and layers. Multilayer ANNs are usually 

capable of modeling more difficult problems. 

 Let the following tan-sigmoid (𝑓𝑡𝑎𝑛(𝑥)) and linear (𝑓𝑙𝑖𝑛(𝑥)) functions be the transfer 

functions for the hidden and output layers, respectively, 

𝑓𝑡𝑎𝑛(𝑥) =
2

1+𝑒𝑥𝑝(−2𝑥)
− 1         (1) 

𝑓𝑙𝑖𝑛(𝑥) = 𝑥.           (2) 

Then, Figure 1 represents a sample of two layered feed-forward ANN. In this network, each 

neuron in a layer is linked only with neurons of a different layer and the outputs are determined 

by the following two equations: 
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𝑧𝑠
𝑘(𝑥) =

2

1+𝑒𝑥𝑝(−2(∑ 𝑣𝑗𝑠
0 𝑥𝑗+𝑏𝑠

𝑘𝑑
𝑗=1 ))

− 1; 𝑘 = 1, 𝑠 = 1,… , 𝑛𝑛𝑘   (3) 

𝑦(𝑥) = ∑ 𝑣𝑠′𝑠
𝑘−1𝑧𝑠′

𝑘−1(𝑥)
𝑛𝑛𝑘−1
𝑠=1 + 𝑏𝑠

𝑘 ; 𝑘 = 1, 𝑠 = 1,    (4) 

where 𝑥𝑗 serves as input neuron𝑗, 𝑣𝑗𝑠
0  denotes the weight of the connection link between input 

neuron 𝑗 and hidden neuron 𝑠 in the first layer, and 𝑣𝑠′𝑠
𝑘−1 denotes the weight of the connection 

link between neuron 𝑠′ in the hidden layer 𝑘 − 1 and neuron 𝑠 in the layer 𝑘. In addition, 𝑏1
2 

denotes the bias value of the output neuron and 𝑧𝑠(𝑥) is the activation value of the hidden 

neuron𝑠. A training method defined on a feed-forward ANN to solve such mapping problems 

modifies the weights and biases in such a manner that the following performance criterion is 

minimized: 

𝑀𝑆𝐸 =
∑ (�̅�(𝑥𝑖)−𝑦(𝑥𝑖))

2𝑛
𝑖=1

𝑛
,         (5) 

where 𝑥𝑖 for 𝑖 = 1,… , 𝑛 stands for the input patterns, �̅�(𝑥𝑖) denotes the target outputs and 𝑛 

shows the number of input patterns (Mohammad Nezhad & Mahlooji, 2014). 

 

Figure 1. A sample of a two-layered feed-forward artificial neural network 

 

3.1. ANN versus Kriging 

 As stated in Section 2, there are some works in the literature that compare ANN with 

Kriging and other simulation meta-models (see for example Wang & Shan, 2007; Willmes et al., 

2003; Yuan & Guangchen, 2009; Vicario et al., 2016). The comparisons are performed with 
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respect to one or some of the efficiency, accuracy, interpretability and robustness performance 

measures. Some of the advantages and disadvantages of Kriging and ANN meta-models are 

reported in Table 2 (Østergård et al., 2018). 

   

Table 2:  Comparison of Kriging and ANN meta-models 

Meta-model Advantages Disadvantages 

Kriging  less sensitive to the chosen 

settings 

 among the slowest algorithms 

 becomes unstable for large 

training sets  

ANN  For the most accurate, non-linear 

methods, NN proved the most 

efficient for large training sets 

 less time-consuming for new 

predictions 

 have a large number of possible 

configurations 

 the least interpretable method 

 accuracies obtained for NN vary 

when repeating the meta-

modeling 

 

As seen in Table 2, determining the best combination of the neurons in the hidden layer, the 

weights, and the biases, referred to a configuration, as well as choosing a transfer function and 

the training algorithm is not simple in an ANN-based meta-model. Although this makes it 

difficult to conduct a fair comparison between ANN and other meta-models, there are some 

heuristic methods to determine the ANN hyper-parameters. For example, Rigoni & Lovison 

(2007) stated that for a network with the number of training data𝑞time the number of output 

variables 𝑚, the hidden layer neurons ℎ could be calculated by: 

ℎ ≤ 𝑓𝑖𝑥 (
𝑚(𝑞−1)

(𝑛+𝑚+1)
),          (6) 

where 𝑓𝑖𝑥(. ) is the greatest integer less than or equal to its argument and 𝑛 denotes the number 

of input variables.  

 

4. The proposed ANN semi-meta-model-based algorithm 

 A semi-meta-model-based algorithm was introduced for the first time by Moghaddam & 

Mahlooji (2017) to deal with the model-based and meta-model-based difficulties in semi-

expensive simulation optimization problems which take about 2-5 minutes. The main meta-

model used in their work to estimate the relationship between the input and the output of the 

simulation model was the Kriging. Furthermore, they utilized a new particle swarm optimization 
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(PSO) algorithm with improved exploration and exploitation characteristics. In what comes next, 

while the use of an ANN-based meta-model, instead of Kriging, is justified, a summary of the 

steps involved in their research and the differences between their work and the current paper is 

highlighted. 

 Simulation outputs have been used not only in meta-model fitting and validation steps but 

also in the optimization stage. This means that the meta-model fitting and optimization 

components do not longer work independently. Besides, if the validity of a meta-model is 

rejected, instead of one new point a few simulation points are added in order to fit and validate 

expensive simulation problems. As such, the processing time could be shortened significantly 

when an ANN-based meta-model is used to solve semi-expensive simulation optimization 

problems. 

 The flowchart of the proposed ANN semi-meta-model-based algorithm that is shown in 

Figure 2 consists of two phases. In the first phase, the algorithm enjoys model-based 

characteristics where the output of the simulation model is directly used for optimization 

purposes. In the second phase, the algorithm acts as a meta-model-based algorithm where the 

validated meta-model obtained from the first phase will substitute for the simulation model. 

Furthermore, similar to Moghaddam & Mahlooji (2017), a spatial hole-PSO (SH-PSO) is 

introduced and used in both phases to attract newly generated particles towards empty areas of 

the solution space. 

 

4.1. Constructing the ANN meta-model 

 As the Levenberg-Marquardt optimization is one of the fastest back-propagation 

algorithms, it is used in this paper as the network training function. This algorithm has been 

designed to approach second-order training speed without having to compute the Hessian matrix. 

Although it does require more memory than the other training algorithms, it is especially suited 

for function approximation problems where the network contains up to several hundreds weights 

and the approximation need to be very accurate (Yuan & Guangchen, 2009). In addition, 70% of 

the data at hand are assigned to the training process and the remaining to the validation test 

according to MATLAB user’s recommendations. 
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Figure 2. The flowchart of the ANN semi-meta-model-based algorithm 
 

4.2. Algorithm specifications 

 The comparison of the proposed ANN-based and the Kriging (Moghaddam & Mahlooji, 

2017) meta-models should be fair. Thus, most of the specifications of an ANN-based semi-meta-

model-based algorithm such as initial experimental design, the employed PSO algorithm, the 

meta-model validation process, and so on must be as much as similar to the ones used in 

Moghaddam & Mahlooji (2017). In what follows these specifications are presented.  

 For the initial sampling points, the Latin hypercube sampling method that maximizes the 

minimum distances between the points is used in both methods. Moreover, the leave-one-out 

cross-validation approach is used as the validation scheme in both algorithms. In this approach, 

the value of the studentized prediction error for every output of the left-out point i is calculated 

as 

𝑡𝑟−1
𝑖 =

�̿�(𝑥𝑖)−�̅�
∗(𝑥𝑖)

√𝑣𝑎�̂�(�̿�(𝑥𝑖))+𝑣𝑎�̂�(𝑦
∗(𝑥𝑖))

,         (7) 
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where �̿�(𝑥𝑖)is the average of the bootstrapped simulation outputs and �̅�∗(𝑥𝑖) represents the 

average of the bootstrapped ANN predictors of the left-out point 𝑥𝑖. Furthermore, 𝑣𝑎�̂�(�̿�(𝑥𝑖)) 

and 𝑣𝑎�̂�(𝑦∗(𝑥𝑖)) are the variance of the averages of the bootstrapped simulation outputs and the 

variance of the bootstrapped ANN predictors of 𝑥𝑖, respectively.  

 The main differences between the SH-PSO algorithms with the simple PSO are the SH-

detecting algorithm used to find the best points and to attract newly generated particles towards 

themselves with the help of assigning a weight between zero and one (regarding the objective 

function) to each spatial hole. Besides, the SH-PSO algorithm uses a simulation model outside 

the algorithm for solution evaluation in the first phase. Contrariwise, in the second phase, the 

ANN meta-model works inside the algorithm and is used for the evaluation process. Interested 

readers are referred to Moghaddam & Mahlooji (2017) for more information on the SH-detecting 

and the SH-PSO algorithms. 

 

5. Applications and results 

 An (s, S) inventory control model alongside five popular test functions is used as 

simulation models in this section in order to assess the performances of the two semi-meta-

model-based algorithms discussed in Section 4. 

 

5.1. The (s, S) inventory as a realistic simulation model 

 An (s, S) inventory control model is provided in this section to compare the performances 

of the proposed ANN and the existing Kriging as the simulation meta-models in the SMB 

algorithm. In this model, a replenishment order is placed as soon as the inventory position (on-

hand inventory + outstanding orders – backlogs) drops to or goes below the reorder point s. This 

replenishment order brings the inventory position back to the order-up-to level S. Note that S 

consequently denotes the maximum inventory position. The parameters of this (s, S) inventory 

control model are as follows (Biles at al., 2007): 

 The holding cost is charged $1 per day per item 

 The shortage cost is charged $5 per day per item 

 The simulation period is 4,000 days per replicate 

 The ordering cost is $32 plus $3 per unit ordered 

 The order arrival time follows an exponential distribution with a mean of 6 days 
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 The inventory position is reviewed at the end of each day 

 The customer demand is exponentially distributed with the mean of 90  

 The number of units demanded per customer is 1. 

 The value of the parameters of the optimization processes ANN-SMB and Kriging-SMB 

are set according to Table 3. Both of the algorithms are coded in MATLAB 8.4 environment. 

Besides, in order to have a comfortable linkage between the proposed simulation and the 

optimization models, the inventory model is simulated in MATLAB 8.4 as well.  

 

Table 3:  The parameters of the ANN-SMB and the Kriging-SMB algorithms to solve the (s, S) 

inventory control problem. 

  Value 

Parameter  
ANN-SMB 

Algorithm 

Kriging-SMB 

Algorithm 

Number of initial design points (𝑖𝑑𝑝)  20 10 

Number of simulation replication (𝑟)  4 4 

Particle size (𝑚)  10 10 

Maximum number of spatial holes (𝑠ℎ𝑚𝑎𝑥)  5 5 

Maximum number of neighbors to be evaluated (𝑁𝑚𝑎𝑥)  15 10 

Maximum acceptable error for meta-model validation  0.05 0.1 

Number of bootstrap replications for meta-model validation  100 100 

The strength of the movement towards the local best (𝑐1)  2 2 

The strength of the movement towards the global best (𝑐2)  2 2 

Terminating condition (𝑇𝑚𝑖𝑛)  0.005 0.005 

 

  The results of 10 independent replications of the simulation-optimization are shown in 

Table 4 for both the ANN and the Kriging semi-meta-model-based algorithms. The obtained 

solutions and the objective functions with the number of solution evaluations are presented in 

this table.  

 As seen in Table 4, the average of the optimal values of the ANN-SMB algorithm is 

595.28 with a standard deviation of 10.61. These values are 603.71 and 14.99 for the Kriging-

SMB algorithm, respectively. Here, the null hypothesis µ𝐴𝑁𝑁−𝑆𝑀𝐵 ≤ µ𝐾𝑟𝑖𝑔𝑖𝑛𝑔−𝑆𝑀𝐵 is tested 

using a two-sample student t-test in order to determine if the obtained average optimal value of 

the ANN-SMB is not greater than that of the kriging-SMB significantly. As the t-statistics and 

the p-value are obtained as -1.4782 and 0.9133, respectively, the null hypothesis cannot be 
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rejected at a 5% significance level. This implies that the two algorithms provide equal quality 

solutions on the average. Based on the results shown in the fourth and sevenths columns of Table 

4, a similar test of hypothesis is performed here to compare the average number of simulation 

evaluations involved in the above two algorithms. As the P-value of the two-sample t-test is 

obtained as 0.953, again the null hypothesis on the equality of the two means cannot be rejected 

at the 5% significance level. This implies that the average number of simulation evaluations used 

in the two algorithms does not differ statistically. 

 

Table 4: Comparison of ANN-SMB and Kriging-SMB algorithms for the (s, S) inventory 

control problem. 

Methods  ANN-SMB Algorithm  Kriging-SMB Algorithm 

Run  
Solution 

(s, S) 
Objective 

No. of 

Simulation 

Evaluations 

 
Solution 

(s, S) 
Objective 

No. of 

Simulation 

Evaluations 

1  (741, 845) 604.58 195  (678, 855) 606.97 280 

2  (658, 894) 611.75 285  (702, 880) 599.64 260 

3  (712, 870) 590.07 240  (692, 813) 613.95 280 

4  (721, 876) 584.29 330  (696, 848) 594.43 240 

5  (682, 824) 605.16 285  (628, 796) 635.41 280 

6  (736, 873) 587.54 285  (717, 886) 595.96 280 

7  (665, 835) 601.58 150  (749, 895) 584.48 240 

8  (740, 887) 578.24 375  (662, 857) 617.38 240 

9  (696, 857) 591.68 330  (741, 861) 591.97 260 

10  (709, 874) 597.92 150  (730, 848) 596.91 280 

Avg.   595.28 262.5   603.71 264 

Std.   10.61    14.99  

The best (s, S) and the best objective values are shown in bold. 

 

5.2. Analytical test functions 

 In this section, the performances of the proposed ANN-SMB and the existing Kriging-

SMB algorithms are compared to each other using five popular single-objective optimization test 

problems called Sphere, Griewank, Schaffer’s F6, Rastrigin, and Rosenbrock (Molga & 

Smutnicki, 2005). The solutions obtained using the ANN-SMB algorithm on these test functions 

alongside its comparative analysis with the Kriging-SMB solutions obtained in Moghaddam & 

Mahlooji (2017) are presented in Table 5. In this table, the values of 𝑖𝑑𝑝, 𝑟, 𝑚, and𝑠ℎ𝑚𝑎𝑥 
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parameters are respectively determined 20, 5, 10, and 5 for the ANN-SMB algorithm and 10, 5, 

10, and 5 for the Kriging-SMB algorithm. The other parameter values are the same as the ones 

used in Table 3. In addition, while the optimal solutions of the functions are shown in the third 

column, the fourth and fifth column contains respectively the sample means and the sample 

standard deviations (Std.) of the solutions obtained by the proposed ANN-SMB algorithm. 

Similarly, the sample means and the sample standard deviations of the solutions obtained by the 

Kriginig-SMB algorithm are shown in the seventh and the eights column of Table 5, 

respectively. Finally, the required numbers of function evaluations of the ANN-SMB and the 

Kriging-SMB algorithms to reach the solutions are reported in the sixth and ninth columns, 

respectively.  

 As seen in Table 5, while the proposed ANN-SMB algorithm works better than the 

Kriging-SMB algorithm for the Sphere, the Griewank, the Schaffer’s F6, and the Rosenbrock test 

functions on the average, the optimization results obtained for the Rastrigin function shows that 

the Kriging-SMB performs better in this case. Moreover, the result of a two-sample student t-test 

for the equality of the average numbers of function evaluations involved in the two algorithms 

shows that there are no significant differences between the two algorithms (P-value=0.570). This 

implies that the proposed algorithm is the better one in general. Besides, the outcome of a one-

way blocked (the 5 test problems are used as blocks) analysis of variance (ANOVA), which is 

used to test the equality of the performance means of the two algorithms in all test problems, is 

reported in Table 6 based on 20 replications in each block.  Once again, as the null hypothesis is 

not rejected at a p-value of 0.321, the two algorithms do not differ significantly. 

 

6. Conclusion and future works 

 This paper presented a new version of a semi-meta-model-based simulation optimization 

algorithm, in which an artificial neural network was used as the primary meta-model. Although 

the results obtained using statistical comparisons with a Kriging-based meta-model did not show 

a significant difference between the performances of the proposed ANN-SMB and the Kriging-

SMB algorithms for five popular test functions, we showed that the ANN-SMB works as the 

better algorithm to optimize four out of five test functions as well as for an (s, S) inventory 

optimization model.  
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Table 5: Nmerical results of using the ANN-SMB and the Kriging-SMB algorithms on five test problems 

   ANN-SMB Algorithm  Kriging-SMB Algorithm 

   Objective   Objective  

Function  Formula Optimal Mean Std. 

Number of 

function 

evaluations 

 Mean Std. 

Number of 

function 

evaluations 

Sphere 
𝑦 = ∑ 𝑥𝑗

2
𝑑

𝑗=1
 

𝑥∗ = [0,0] 0.018 0.024 266 

 

0.189 0.09 244 

𝑑 = 2,−2 ≤ 𝑥𝑗 ≤ 2, 𝑗 = 1,2 𝑦∗ = 0  

Griewank 
𝑦 =

1

4000
∑ 𝑥𝑗

2
𝑑

𝑗=1
−∏ cos(

𝑥𝑗

√𝑗
) + 1

𝑑

𝑗=1
 

𝑥∗ = [0,0] 0.024 0.017 415 

 

0.335 0.22 368 

𝑑 = 2,−8 ≤ 𝑥𝑗 ≤ 8, 𝑗 = 1,2 𝑦∗ = 0 
 

Schaffer’s 

F6 

𝑦 = 0.5 −
(sin√(𝑥1

2 + 𝑥2
2))

2

− 0.5

(1 + 0.001(𝑥1
2 + 𝑥2

2))
2  

𝑥∗ = [0,0,0] 0 0 492 

 

0.501 0.05 425 

𝑑 = 2,−3 ≤ 𝑥𝑗 ≤ 3, 𝑗 = 1,2 𝑦∗ = 0  

Rastrigin 
𝑦 =∑ (𝑥𝑖

2 − 10 cos(2 × 𝜋𝑥𝑗) + 10)
𝑑

𝑗=1
 

𝑥∗ = [0,0,0] 4.317 1.122 460 

 

0.772 0.16 457 

d= 3,−5 ≤ 𝑥𝑗 ≤ 5, 𝑗 = 1,2,3 𝑦∗ = 0 
 

Rosenbrock 
𝑦 =∑ (100(𝑥𝑗+1 − 𝑥𝑗

2))
2

+ (𝑥𝑗 − 1)
2𝑑−1

𝑗=1
 

𝑥∗ = [1,1,1] 2.133 1.142 528 

 

3.103 1.67 483 

𝑑 = 3,−3 ≤ 𝑥𝑗 ≤ 3, 𝑗 = 1,2,3 𝑦∗ = 0  

Avg.     432.2    395.4 
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Table 6:  Analysis of variance to compare the performances of the ANN-SMB and the Kriging-

SMB algorithms on the five test functions 

Source DF Adj. SS Adj. MS F-Value P-Value 

Treatment 1 59,577 59,577 1.00 0.321 

Block 4 247,438 61,860   

Error 94 5,626,298 59,854   

Total 99 5,933,313    

 

 As the number of parameters and the tradeoff between the accuracy and the required 

speed is a critical factor to decide which algorithm to use, it is highly recommended to take into 

account the benefits and the drawbacks of each meta-model. 

 While the present study did not examine the performances of some other popular meta-

models such as radial basis function (RBF), regression models, and so on in the SMB algorithm, 

their use along with their comparisons with the ones investigated in this paper is recommended 

for a future investigation. Furthermore, changing or modifying the meta-heuristic algorithm in 

the optimization steps could have a positive effect on the performances of various meta-models. 

Comparing the performances of different versions of SMB with real-world semi-expensive 

problems is another suggestion. 
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